

BNAS-v2: A Summary with Empirical Improvements

Dahyun Kim¹ Kunal P. Singh² Jonghyun Choi¹

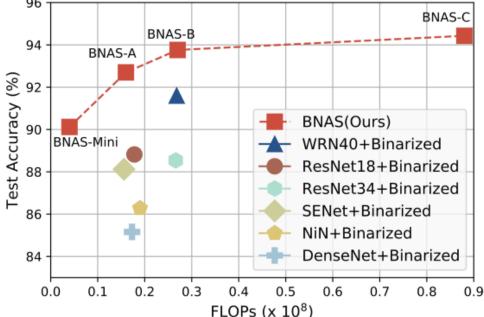
¹GIST

²**1**2

- Conjecture binarizing well-known FP networks is sub-optimal
- Want to search for architectures that are specialized for the binary domain
- Use cell-based NAS method with:
 - New binary search space
 - New cell template

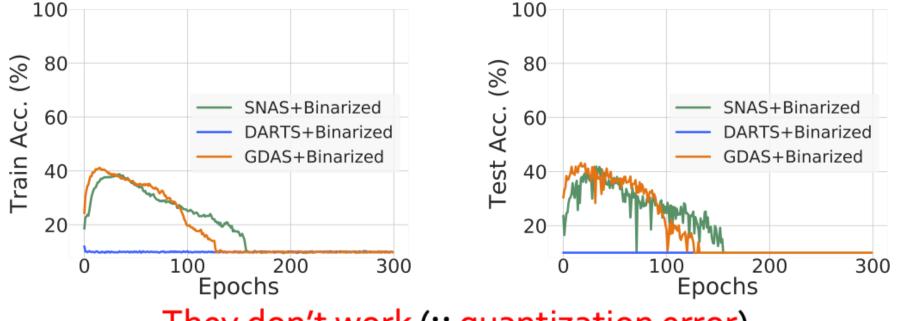
Introduction

• New search objective



Want to Search Binary Networks

- We use cell based differentiable search methods
- Tried SNAS^[1], DARTS^[2], GDAS^[3]



They don't work (:: quantization error)

[1] Xie et al., "SNAS: stochastic neural architecture search," ICLR 2019
[2] Liu et al., "DARTS: Differentiable architecture search," ICLR 2019
[3] Dong et al., "Searching for A Robust Neural Architecture in Four GPU Hours," CVPR 2019

Reduce Quantization Error by New Search Space

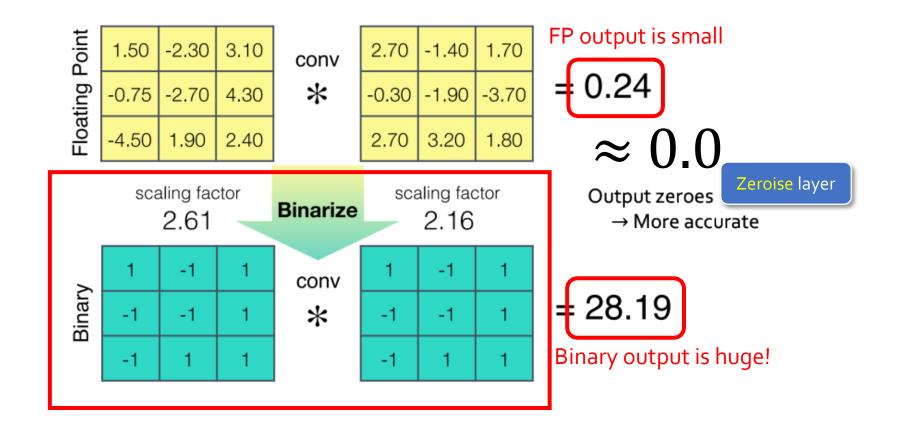
quess!

GIST

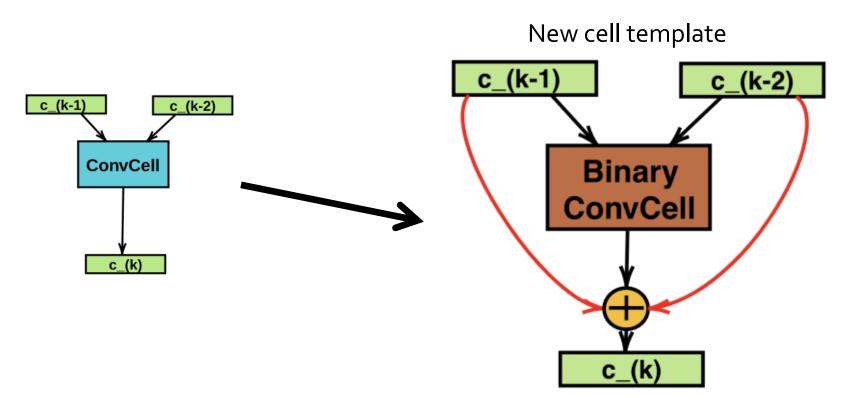
- Construct binarize network with each layer type alone
 - Evaluate inference accuracy on CIFAR10: random guess is 10%
- To see which types of convolution is resilient to quantization error

Layer Type	Conv		Dil. Conv		Sep. Conv	
Kernel Size	3×3	5×5	3×3	5×5	3×3	5×5
FP Acc. (%)	61.78	60.14	-56.97	55.17	56.38	57.00
FP Acc. (%) Bin. Acc. (%)	46.15	42.53	41.02	37.68	10.00	10.00
Same as random						random

Reduce Quantization Error by **New Search Space** (cont'd)



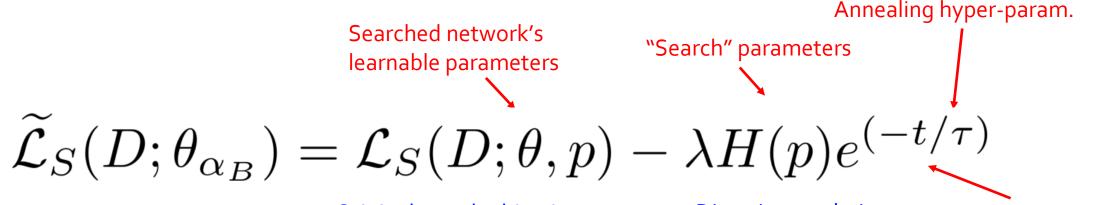
Reduce Quantization Error by New Cell Template



Add residual connection from a previous cell

 \rightarrow Gradient information is better preserved

Diversify Early Search by New Search Objective



Original search objective

Diversity regularizer

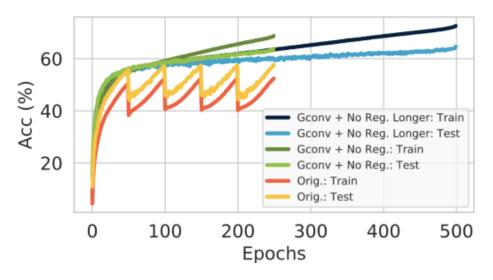
Epoch number

- Undertrained convolutions layers < pooling layers early on
- Propose to enforce exploration in the early search phase
 - By an entropy maximizing regularizer

Empirical Improvements

GIST · AZ

- The first convolution (or stem) is kept FP
 - Use group convolutions in the stem to reduce FLOPs
- Standard training schemes may contain excess regularization
 - For binary networks, this may actually cause under-fitting
 - Minimize regularization while training



Comparison with SOTA Binary Networks

• Outperforms or performs on par with many SOTA binary nets

FLOPs ($\times 10^8$)	Method (Backbone Arch.)	Binarization Scheme	Pretraining	Top-1 Acc. (%)	Top-5 Acc. (%)
~ 1.48	BinaryNet (ResNet18) [3]	Sign	×	42.20	67.10
	ABC-Net (ResNet18) [9]	Clip + Sign	×	42.70	67.60
	BNAS-D	Sign + Scale	×	57.69	79.89
	BNAS-D-No-Reg	Sign + Scale	×	61.60	82.91
	BNAS-D $v2^{\dagger}$	Sign + Scale	×	63.82	84.25
	BNAS-D v2 Multi-Stage [†]	Sign + Scale	1	66.03	85.42
	BATS [†] [1]	Sign + Scale	\checkmark	66.10	87.00
~ 1.63	Bi-Real (Bi-Real Net18) [12]	Sign + Scale	✓	56.40	79.50
	XNOR-Net++ (ResNet18) [2]	Sign + Scale*	×	57.10	79.90
	PCNN (ResNet18) [4]	Projection	\checkmark	57.30	80.00
	BONN (Bi-Real Net18) [5]	Bayesian	×	59.30	81.60
	BinaryDuo (ResNet18) [7]	Decoupled	\checkmark	60.40	82.30
~ 1.78	ABC-Net (ResNet34) [9]	Clip + Scale	×	52.40	76.50
~ 1.93	Bi-Real (Bi-Real Net34) [12]	Sign + Scale	\checkmark	62.20	83.90
~ 6.56	CBCN (Bi-Real Net18) [10]	Sign + Scale	1	61.40	82.80

Thank You

https://github.com/gistvision/bnas

