


(NAS) method for binary networks

BNAS-v2: A Summary with Empirical Improvements

Kunal P. Singh² Dahyun Kim¹

Jonghyun Choi¹

Experiments

Classification Results on ImageNet

FLOPs ($\times 10^8$)	Method (Backbone Arch.)	Binarization Scheme	Pretraining	Top-1 Acc. (%)	Top-5 Acc. (%)
	BinaryNet (ResNet18) [3]	Sign	×	42.20	67.10
	ABC-Net (ResNet18) [9]	Clip + Sign	×	42.70	67.60
	BNAS-D	Sign + Scale	×	57.69	79.89
~ 1.48	BNAS-D-No-Reg	Sign + Scale	×	61.60	82.91
	BNAS-D v 2^{\dagger}	Sign + Scale	×	63.82	84.25
	BNAS-D v2 Multi-Stage [†]	Sign + Scale	\checkmark	66.03	85.42
	BATS [†] [1]	Sign + Scale	\checkmark	66.10	87.00
	Bi-Real (Bi-Real Net18) [12]	Sign + Scale	✓	56.40	79.50
	XNOR-Net++ (ResNet18) [2]	Sign + Scale*	×	57.10	79.90
~ 1.63	PCNN (ResNet18) [4]	Projection	\checkmark	57.30	80.00
~ 1.05	BONN (Bi-Real Net18) [5]	Bayesian	×	59.30	81.60
	BinaryDuo (ResNet18) [7]	Decoupled	\checkmark	60.40	82.30
~ 1.78	ABC-Net (ResNet34) [9]	Clip + Scale	×	52.40	76.50
~ 1.93	Bi-Real (Bi-Real Net34) [12]	Sign + Scale	✓	62.20	83.90
~ 6.56	CBCN (Bi-Real Net18) [10]	Sign + Scale	✓	61.40	82.80

- Propose a cell-based NAS method specifically for binary networks Design a new search space via including the Zeroise layer - Use new cell template and search objective tuned for binary networks

	2.70	-1.40	1.70	
	-0.30	-1.90	-3.70	= 0.24
	2.70	3.20	1.80	
e	sca	aling fac 2.16	ctor	
	1	-1	1	
	-1	-1	1	= 28.19
	-1	1	1	
	Dil. C	Conv	Se	ep. Conv

Dil.	Conv	Sep. Conv		
3×3	5×5	$3 \times \overline{3}$	5×5	
56.97	55.17	56.38	57.00	
41.02	37.68	10.00	10.00	

Ablations on CIFAR10

 Proposed components all contribute to accuracy

Model	Full	No Skip	No Zeroise	No Div
BNAS-A BNAS-B BNAS-C	92.70 93.76 94.43	$61.23 \\ 67.15 \\ 70.58$	$89.47 \\ 91.69 \\ 88.74$	$90.95 \\ 91.55 \\ 92.66$

Summary

Binary Networks for Computer Vision CVPR 2021 Workshop

Updated code will be available →

