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1. Introduction
Backbone architectures of most binary networks are

well-known floating point (FP) architectures such as the
ResNet family. Questioning that the architectures designed
for FP networks might not be the best for binary net-
works, we propose to search architectures for binary net-
works (BNAS). Specifically, based on the cell based search
method, we define the new search space of binary layer
types, design a new cell template, and rediscover the util-
ity of and propose to use the Zeroise layer instead of using
it as a placeholder. The novel search objective diversifies
early search to learn better performing binary architectures.
We also discuss simple empirical improvements that boost
the performance of the searched architectures by over 6%
in top-1 accuracy on the ImageNet classification task.

2. Approach
To search binary networks, we formulate the problem of

cell-based architecture search as:

α∗ = argmin
α∈A(S,T )

LS(D; θα), (1)

where A is the feasible set of architectures, S is the search
space, T is the cell template which is used to create valid
networks, LS is the search objective, D is the dataset, θα is
the parameters of the searched architecture α which contain
both architecture parameters (used in the continuous relax-
ation [11], Eq. 2) and the network weights (the learnable
parameters of the layer types, Eq. 2), and α∗ is the searched
final architecture. Following [11], we solve the minimiza-
tion problem using stochastic gradient descent (SGD).

In the above formulation, we propose a new search space
(SB), cell template (TB) and a new search objective L̃S for
binary networks and outline the core idea of the proposed
components in the following. Please refer to [6] for addi-
tional details.

2.1. Search Space for Binary Networks (SB)

The Zeroise layer outputs all zeros irrespective of the in-
put [11]. It was originally proposed to model the lack of
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Figure 1. An example when the Zeroise layer is beneficial for bi-
nary networks. Since the floating point convolution is close to zero
but the binarized convolution is far greater than 0, if the search se-
lects the Zeroise layer instead of the convolution layer, the quanti-
zation error reduces significantly

Layer Type Bin Conv. Bin Dil. Conv. MaxPool AvgPool Zeroise

Kernel Size 3× 3 5× 5 3× 3 5× 5 3× 3 3× 3 N/A

Table 1. Proposed search space for BNAS. Bin Conv, Bin Dil.
Conv, MaxPool and AvgPool refer to the binary convolution, bi-
nary dilated convolution, max pooling and average pooling layers,
respectively

connections but they are simply used as a placeholder layer
type in [11].

However, we argue that the Zeroise layer can also reduce
quantization error in binary networks such as the example
shown in Fig. 1. Including the Zeroise layer in the final ar-
chitecture is particularly beneficial when the situation sim-
ilar to Fig. 1 happens frequently as the quantization error
reduction is significant. Hence, we use the Zeroise layer for
reducing the quantization error and first propose to keep it
in the final architectures instead of using it as a placeholder.

Along with the addition of the Zeroise layer, we summa-
rize the defined search space for BNAS (SB) in Table 1.

2.2. Cell Template for Binary Networks (TB)

With the defined search space, we now search for a net-
work architecture with the convolutional cell template pro-
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FLOPs (×108) Method (Backbone Arch.) Binarization Scheme Pretraining Top-1 Acc. (%) Top-5 Acc. (%)

∼ 1.48

BinaryNet (ResNet18) [3] Sign 7 42.20 67.10
ABC-Net (ResNet18) [9] Clip + Sign 7 42.70 67.60

BNAS-D Sign + Scale 7 57.69 79.89
BNAS-D-No-Reg Sign + Scale 7 61.60 82.91

BNAS-D v2† Sign + Scale 7 63.82 84.25

BNAS-D v2 Multi-Stage† Sign + Scale 3 66.03 85.42

BATS† [1] Sign + Scale 3 66.10 87.00

∼ 1.63

Bi-Real (Bi-Real Net18) [12] Sign + Scale 3 56.40 79.50
XNOR-Net++ (ResNet18) [2] Sign + Scale* 7 57.10 79.90

PCNN (ResNet18) [4] Projection 3 57.30 80.00
BONN (Bi-Real Net18) [5] Bayesian 7 59.30 81.60
BinaryDuo (ResNet18) [7] Decoupled 3 60.40 82.30

∼ 1.78 ABC-Net (ResNet34) [9] Clip + Scale 7 52.40 76.50

∼ 1.93 Bi-Real (Bi-Real Net34) [12] Sign + Scale 3 62.20 83.90

∼ 6.56 CBCN (Bi-Real Net18) [10] Sign + Scale 3 61.40 82.80

Table 2. Comparison of ImageNet classification performance of various binary networks. Our architectures with various training schemes
are indicated by gray cells. Models with the † symbol indicates using group convolutions following [1]. ‘BNAS-D-No-Reg’ refers to
the BNAS-D model trained with minimal regularization. ‘BNAS-D v2’ and ‘BNAS-D v2 Multi-Stage’ refers to the BNAS-D with group
convolutions trained with minimal regularization or with the process used in [1].
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posed in [14]. However, the searched architecture still suf-
fers from unstable gradients in the binary domain as shown
in Fig. 4 of [6]. To mitigate this issue, we propose to add
skip-connections between multiple cells in Fig. 2.

2.3. Search Objective for Binary Networks (L̃S)

During the search, the layers with learnable parameters
(e.g., convolutional layers) are not selected as often early
on as the layers requiring no learning, which is even more
severe in the binary domain. To alleviate this, we propose to
use an exponentially annealed entropy based regularizer in
the search objective. Specifically, we subtract the entropy
of the architecture parameter distribution from the search
objective as:

L̃S(D; θαB
) = LS(D; θ, p)− λH(p)e(−t/τ), (2)

where LS(·) is the cross-entropy, θαB
are the parameters of

the sampled binary architecture, split into the architecture
parameters p and the network weights θ,H(·) is the entropy,
λ is a balancing hyper-parameter, t is the epoch, and τ is an
annealing hyper-parameter. The changed search objective
will encourage the search to explore diverse layer types.

2.4. Empirical Improvements

Following [1], we use group convolutions for the first
convolution layer. Additionally, we conjecture that mini-
mizing regularization during training by removing weight
decay and color jittering is beneficial because the searched
binary networks could be suffering from underfitting due to
excess regularization. Hence, we remove the excess regu-
larization during training and observe non-trivial gains (Ta-
ble 2).

3. Experiments

We use CIFAR10 [8] (for the search process) and Ima-
geNet (ILSVRC 2012) [13] datasets. Please refer to [6] for
more experimental details. We summarize the ImageNet
classification results in Tab. 2.

‘BNAS-D v2’ improves upon ‘BNAS-D’ by over 6%
on the top-1 accuracy. Empirically, we also observe the
training accuracy to be noticeably higher for ’BNAS-D v2’,
which demonstrates that the underfitting problem is fixed.
We also train BNAS-D v2 using the training scheme used
in [2] (‘BNAS-D v2 Multi-Stage’) and find the performance
to be on-par with that of the network searched in [1].
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