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Abstract

Data-free quantization (DFQ) is a technique that creates a
lightweight network from its full-precision counterpart with-
out the original training data, often through a synthetic
dataset. Although several DFQ methods have been proposed
for vision transformer (ViT) architectures, they fail to achieve
efficacy in low-bit settings. Examining the existing methods,
we observe that their synthetic data produce misaligned atten-
tion maps, while those of the real samples are highly aligned.
From this observation, we find that aligning attention maps
of synthetic data helps improve the overall performance of
quantized ViTs. Motivated by this finding, we devise MimiQ,
a novel DFQ method designed for ViTs that enhances inter-
head attention similarity. First, we generate synthetic data by
aligning head-wise attention outputs from each spatial query
patch. Then, we align the attention maps of the quantized
network to those of the full-precision teacher by applying
head-wise structural attention distillation. The experimental
results show that the proposed method significantly outper-
forms baselines, setting a new state-of-the-art for ViT-DFQ.

Code — https://github.com/iamkanghyunchoi/mimiq
Extended version — https://arxiv.org/abs/2407.20021

Introduction
Over the past few years, Vision Transformers (ViT) (Doso-
vitskiy et al. 2021) have gained increasing interest due to
their remarkable performance on many computer vision
tasks. However, ViT has high computational costs compared
to conventional CNNs, making it challenging to adopt in
many resource-constrained devices. Thus, various works fo-
cus on reducing the costs of ViT architectures (Li et al.
2022a; Liu et al. 2021c; Kong et al. 2022; Yu and Wu
2023). One popular approach is network quantization (Nagel
et al. 2021; Gholami et al. 2021), which converts floating-
point parameters and features to low-bit integers. However,
naively converting the parameters to lower-bit induces a
large accuracy drop, which is why quantization usually re-
quires additional calibration (Sung, Shin, and Hwang 2015;
Liu et al. 2021c; Lin et al. 2022) or fine-tuning (Courbariaux,
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Figure 1: Attention similarity histograms of Base DF Syn-
thesis (high and low similarity, random sampled) and
MimiQ. Colored boxes denote ImageNet accuracy of the
corresponding dataset. This motivational study shows the at-
tention similarity is related to the DFQ accuracy of ViTs.

Bengio, and David 2015; Hubara et al. 2017) using the orig-
inal training dataset. Unfortunately, in real-life cases, the
original training dataset is not always available due to pri-
vacy concerns, security issues, or copyright protections (Liu
et al. 2021a; Hathaliya and Tanwar 2020).

Data-free quantization (DFQ) (Nagel et al. 2019) ad-
dresses such dataset inaccessibility by quantizing the net-
work without using the original training data. To replace the
original dataset, recent methods generate synthetic data from
the pretrained networks and use it for calibration. These ap-
proaches directly optimize synthetic samples with gradient
descent (Zhong et al. 2022; Li et al. 2022b, 2023a) or train
an auxiliary data generator (Xu et al. 2020; Choi et al. 2021).

Unfortunately, existing DFQ methods suffer from de-
structive accuracy drops on low-bit ViTs (refer to Tab. 2).
This is because CNN-based DFQs rely on batch normaliza-
tion (BN) statistics to create synthetic samples resembling
the original training data, making them unsuitable for ViTs
that do not contain the BN layer. Recent DFQ approaches
for ViTs, such as PSAQ V1/V2 (Li et al. 2022b, 2023a), em-
ploy a patch similarity metric to separate foreground from
background in images. However, these methods overlook the
overall image structure and the positional context of patches,
potentially resulting in poor quality synthetic images.

To this end, we propose MimiQ, a DFQ framework for
low-bit ViT quantization by focusing on inter-head atten-



tion similarity. By inspecting the attention maps of real and
synthetic data, we observe that synthetic samples show mis-
aligned attention maps, and aligning those maps improves
accuracy (Fig. 1). Inspired by this motivational study, we de-
sign a DFQ method to achieve inter-head attention similar-
ity. In data generation, we align inter-head attention maps of
synthetic samples by minimizing the distance between head-
wise maps from each spatial query patch. For fine-tuning,
we employ head-wise structural attention distillation on the
quantized network to mimic its full-precision counterpart.

We extensively evaluate MimiQ across various tasks, ViT
networks, and bit settings. The experimental results show
that MimiQ outperforms baselines by a significant mar-
gin especially in low-bit settings, reducing the gap between
data-free and real-data quantization. As a result, MimiQ sets
a new state-of-the-art for the data-free ViT quantization.

Our primary contributions are summarized as follows:
• We discover DFQ baselines produce misaligned attention

maps across attention heads, and aligning attention maps
contributes to the quantization accuracy.
• We propose a synthetic data generation method to align

inter-head attention by reducing the structural distance
between attention heads output from each query patch.
• We propose a head-wise attention distillation method

aligning the structure of attention outputs of quantized
networks with those of full-precision teachers.
• The experiments on various tasks and ViT architectures

show that MimiQ achieves new state-of-the-art perfor-
mance for data-free ViT quantization.

Backgrounds
ViT Architectures and Multi-Head Attention
ViT (Dosovitskiy et al. 2021) is an adaptation of Trans-
former from NLP (Vaswani et al. 2017) to vision. Each
Transformer block comprises a multi-head self-attention
(MSA) layer and a feed-forward layer. For the length Nd

input sequence with d-dimension, X∈Nd×d, MSA performs
attention using multiple heads to obtain diverse features as:

MSA(X) = [H1(X), · · · , HN (X)]WO, (1)

where N is the number of attention heads. The outputs of
each head are concatenated ([·]) and merged by multiplica-
tion with projection matrix WO. Each attention head has
separated weights (WQ

h ,W
K
h ,WV

h ) for computing query,
key, and value vectors. The output of h-th head is as follows:

(Qh,Kh, Vh) = (XWQ
h , XW

K
h , XWV

h ) (2)

Hh(X) = softmax(
QhK

ᵀ
h√
d

)Vh. (3)

Data-Free Quantization
Quantization reduces network complexity by converting
floating-point to integer operations (Nagel et al. 2021; Gho-
lami et al. 2021). We employ uniform quantization which
uses a simple scale (s) and zero-point (z) mapping to trans-
form floating-point values θ into integers θint:

θint = clamp(bθ · s− ze, qmin, qmax), (4)

where (qmin, qmax) indicates minimum and maximum of
the integer representation range, i.e., (−2k−1, 2k−1 − 1).
Refer to the extended version for more details and note that
this work is not limited to a certain quantization scheme.
One drawback of quantization is the potential accuracy loss
due to reduced precision. To counter this, quantization-
aware training (QAT) uses fine-tuning to regain lost accu-
racy. However, the training dataset is not always available
in real-world scenarios (Liu et al. 2021a; Hathaliya and Tan-
war 2020), making QAT inapplicable.

Data-Free Quantization aims to quantize pretrained net-
works without access to any of the real training data, mostly
by using synthetic samples as surrogates. The major chal-
lenge is that one cannot use the training data or external gen-
erators for the synthesis, as it would fall into a case of data
leakage. Instead, information from pretrained full-precision
networks f is used by optimizing the following terms:

LCL = −
∑C

c=1 ŷclog(f(I)c), (5)

LTV = ||Ih,w − Ih+1,w||22+||Ih,w − Ih,w+1||22, (6)

LBNS = ‖µ̂l − µl‖22+‖σ̂l − σl‖22, (7)

where I is the synthetic image, ŷc is a class label among
C classes, (h,w) are pixel coordinates, and (µl,σl) are BN
statistics of the l-th layer. LCL embeds prior knowledge of
the pretrained classifier, andLTV prevents steep changes be-
tween nearby pixels. LBNS reduces the distance between
feature statistics of synthetic samples and BN layers, but it
is not applicable to ViTs due to its lack of BN layers.

Related Work
Vision Transformer Quantization
After the success of ViTs, many efforts have been followed
to reduce its computational and memory costs through quan-
tization. One of the pioneering efforts is PTQ-ViT (Liu et al.
2021c), which performed quantization to preserve the func-
tionality of the attention. Then followed FQ-ViT (Lin et al.
2022) proposed to fully quantize ViT, including LayerNorm
and Softmax. PTQ4ViT (Yuan et al. 2022) applied twin uni-
form quantization strategy and Hessian-based metric for de-
termining scaling factor. I-ViT (Li and Gu 2023) performed
integer-only quantization without any floating-point arith-
metic. Q-ViT (Li et al. 2022a) and RepQ-ViT (Li et al.
2023b) proposed remedies to overcome accuracy degrada-
tion in low-bit ViTs. However, they require the original
training data for calibration, and do not consider real-world
scenarios where training data is often unavailable.

Data-Free Vision Transformer Quantization
After the first proposal for data-free quantization (Nagel
et al. 2019), many efforts specialized for CNNs have fol-
lowed, including ZeroQ (Cai et al. 2020), DSG (Zhang et al.
2021), and intraQ (Zhong et al. 2022). Notably, GDFQ (Xu
et al. 2020) proposed to jointly train generators to synthesize
samples, which laid the foundation for variants using better
generators (Zhu et al. 2021), boundary samples (Choi et al.
2021), smooth loss surface (Choi et al. 2022), and sample
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Figure 2: Attention visualization of synthetic samples and the original dataset. Compared to the original dataset, synthetic data
from baselines present misaligned attention maps. The first row, a sample generated by MimiQ, shows aligned attention maps
across attention heads. The measured average attention similarity (SSIM) further validates MimiQ shows the best alignment.

adaptability (Qian et al. 2023). This stream of methods owes
a large portion of its success to the BN statistics (Eq. (7)).

Unfortunately, the BN layer is absent in ViTs, making the
CNN-targeted techniques suffer from inaccurate sample dis-
tribution when adopted to ViTs. DFQ for ViT is still in an
early stage of development. PSAQ-ViT (Li et al. 2022b) was
the first to present DFQ for ViTs, utilizing inter-patch dis-
crepancy of foreground and background patches to generate
realistic samples. The following work, PSAQ-ViT V2 (Li
et al. 2023a), uses an adaptive method by applying the con-
cept of adversarial training. However, they only focus on
patch-level similarity, neglecting overall image structure.
Parallel to our work, Ramachandran, Kundu, and Krishna
(2024), recently disclosed online, explores patch-level con-
trastive learning to enhance the synthetic data, but still only
considers patch-level information similar to prior works. As
their method does not consider low-bit regions and has dif-
ferent quantization settings from ours, we believe it is not
quite adequate to compare ours with their reported results.

Motivational Study
All the baseline DFQ methods experience huge accuracy
drops in low-bit settings compared to the real-data QAT
(Tab. 2). To investigate the source of such discrepancy, we
inspect attention maps of ViTs, specifically the ViT’s head-
wise attention maps, denoted as Hi in Eq. (1).

The visualization in Fig. 2 shows that real samples lead
to similarly structured attention maps, unlike data-free syn-
thetic samples. We set the base DF synthesis method, which
generates synthetic samples with LCL (Eq. (5)) and LTV

(Eq. (6)), where we also analyze PSAQ V1 and V2 as addi-
tional baselines. On the one hand, the attention maps from
real images clearly display the object’s structure in most
heads. While minor variations exist in different heads high-
lighting different parts, either the object itself (e.g., H11)
or the background (e.g., H9), they exhibit high similarity
to one another. On the other hand, synthetic samples from
baselines do not seem to produce visually similar features

across attention heads. In addition, we present a quantitative
analysis with the SSIM score. In the last column of Fig. 2,
the baselines show lower attention similarity compared to
the real samples. The results also show that MimiQ show
the best alignment of attention heads. Fig. 2 shows visual-
izations from ViT-Base architecture with 12 attention heads.
Please refer to the extended version for more results.

From the observation in Fig. 2, we hypothesize that align-
ing inter-head attention from synthetic samples contributes
to better accuracy of data-free quantized ViTs. To validate
this, we performed motivational experiments to identify the
correlation between attention map similarity and quantiza-
tion accuracy. First, we generate a synthetic dataset using
the base DF synthesis mentioned above. We then measure
the inter-head attention similarity of each image with struc-
tural similarity index measure (SSIM, Wang et al. (2004))
and construct subsets of the synthetic dataset having 1) high
attention similarity and 2) low attention similarity. For com-
parison, we construct a control group with 3) random sam-
pling. Lastly, we train a W4/A4 quantized ViT network with
each sampled group and examine the accuracy.

The results of the experiments (Fig. 1) show that the quan-
tized networks trained with samples of low attention similar-
ity consistently underperform compared to networks trained
with samples of high attention similarity. These results em-
pirically validate our hypothesis that the inter-head attention
similarity of synthetic samples correlates with the quantiza-
tion accuracy. Based on the observation, we devise MimiQ
to encourage inter-head attention similarity throughout the
whole DFQ process, including both data generation and fine-
tuning phases. As shown with turquoise bars in Fig. 1, sam-
ples generated with MimiQ yield higher attention similarity
and have superior quantization accuracy.

Proposed Method
Inspired by the observation from the motivational study, we
propose MimiQ framework, a DFQ framework for ViTs that
utilizes head-wise similarity information from MSA layers.
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The overall process is depicted in Fig. 3. We promote inter-
head similarity in two directions of sample synthesis and
head-wise distillation during fine-tuning.

Sample Synthesis with Inter-Head Similarity
We propose synthetic sample generation with inter-head at-
tention similarity by aligning head-wise internal attention
maps. The Fig. 3a depicts attention head alignment. First, we
collect attention maps from each head that shares the same
spatial query patch index q out of P patches:

Aq = [Q1,qK
ᵀ
1 Q2,qK

ᵀ
2 · · · QN,qK

ᵀ
N ] , (8)

whereAq is the collected attention map and (Q,K) are query
and key matrices from Eq. (2), respectively. Then, we mea-
sure the average distance Dq with attention distance metric
fdist between the attention heads as follows:

Dq =
1

N2

∑N
i

∑N
j fdist(Aq,i, Aq,j). (9)

Here, fdist needs to consider the nature of attention maps:
Attention maps can be inverted while retaining the structure
of images. For example, in the original sample in Fig. 2,H11

focuses on an object while H9 focuses on the background.
The metric should consider such relation among the heads.

To this end, we use absolute SSIM as fdist. A higher
magnitude of SSIM indicates a higher correlation in both
the positive and negative (inverted) directions, representing
the structural similarity between two attention maps. Using
Eq. (9), we can optimize synthetic samples towards inter-
head attention similarity with synthesis loss LG.

LG = LIHC + αLCL + βLTV , (10)

LIHC =
1

LP

∑L
l

∑P
q (1−Dl,q), (11)

where α and β are hyperparameters for LCL (Eq. (5)) and
LTV (Eq. (6)), respectively, L is the number of MSA layers
in the model, and Dl,q is Dq from layer l. The generated
synthetic samples can be found in Fig. 5 and Appendix in
the extended version.

Corr. Coeff. DSSIM MSE L1-Dist. KL-Div.

Spearman 0.9970 0.9823 0.9796 0.9657
Kendall 0.9520 0.8937 0.8863 0.8566

Table 1: Absolute correlation coefficients of attention co-
herency metric to the quantized accuracy.

Head-Wise Structural Attention Distillation
Here, we propose head-wise structural distillation from a
full-precision teacher shown in Fig. 3b, in addition to uti-
lizing our attention-aligned samples. Along with the output
matching loss (i.e., LKL) commonly adopted for QAT, we
further reduce the distance gdist(·) between each attention
output pair by optimizing the following objective:

LHAD =
1

LN

∑L
l

∑N
i gdist(H

T
l,i, H

S
l,i), (12)

where LHAD is head-wise attention distillation loss. HTl,i
and HSl,i are i-th attention head outputs from the l-th layer
of teacher and student, respectively. Therefore, the training
objective LT of the quantized network is as follows:

LT = LKL(fT (X̂)||fS(X̂)) + γLHAD, (13)

where X̂ is synthetic samples, γ is a hyperparameter.
We compare four candidate metrics for gdist: Mean-

squared error (MSE), L1 distance, KL-divergence, and
structural dissimilarity (DSSIM), i.e., the negative of SSIM.
To choose a metric relevant to quantization accuracy, we ran-
domly quantized a portion of attention heads in each MSA
layer of the pretrained ViT-Base network and measure the at-
tention head distance and network accuracy. We sample 500
settings from the configuration space and report Spearman
and Kendall rank correlation coefficients. The comparison
is shown in Tab. 1. The results show that DSSIM has the
highest correlation with quantized accuracy. According to
the experimental results, we choose DSSIM as gdist. Please
refer to extended version for data visualization.



Bits Methods Target
Arch.

Networks

ViT-T ViT-S ViT-B DeiT-T DeiT-S DeiT-B Swin-T Swin-S Swin-B

W4/A4

Real-Data FT - 58.17 67.21 67.81 57.98 62.15 64.96 73.08 76.34 73.06

GDFQ CNN 02.95 04.62 11.73 25.96 22.12 30.04 42.08 41.93 36.04
Qimera CNN 00.57 07.02 05.61 15.18 11.37 32.49 47.98 39.64 29.27
AdaDFQ CNN 02.00 01.78 06.21 19.57 14.44 19.22 38.88 39.40 32.26
PSAQ-ViT V1 ViT 00.67 00.15 00.94 19.61 05.90 08.74 22.71 09.26 23.69
PSAQ-ViT V2 ViT 01.54 04.14 02.83 22.82 32.57 45.81 50.42 39.10 39.26

MimiQ (Ours) ViT 42.99 55.69 62.91 52.03 62.72 74.10 69.33 70.46 73.49
Acc. Gain +40.04 +48.68 +51.18 +26.07 +30.15 +28.28 +18.91 +28.53 +34.23

W5/A5

Real-Data FT - 68.49 73.90 80.52 66.10 73.95 78.39 78.71 81.74 83.08

GDFQ CNN 24.40 53.96 33.56 44.76 57.00 71.03 61.30 78.04 70.55
Qimera CNN 26.70 16.13 09.43 33.13 33.65 47.01 62.13 46.81 43.57
AdaDFQ CNN 27.10 59.36 43.02 53.85 59.55 71.12 64.61 79.82 75.59
PSAQ-ViT V1 ViT 17.66 23.37 16.80 53.36 47.35 57.23 58.63 76.33 57.80
PSAQ-ViT V2 ViT 40.21 63.59 74.29 55.18 65.30 73.16 69.77 80.55 79.80

MimiQ (Ours) ViT 62.40 70.02 78.09 63.40 72.59 78.20 76.39 80.75 82.05
Acc. Gain +22.19 +6.43 +3.80 +8.22 +7.28 +5.04 +6.63 +0.20 +2.25

W4/A8

Real-Data FT - 71.52 79.84 84.52 70.37 78.93 81.47 80.47 82.46 84.29

GDFQ CNN 62.65 76.06 81.68 65.82 76.49 80.03 78.90 81.47 83.63
Qimera CNN 61.80 60.08 63.22 61.90 70.10 72.38 73.93 72.22 76.35
AdaDFQ CNN 64.67 76.27 82.43 67.71 76.92 80.49 79.70 82.07 83.78
PSAQ-ViT V1 ViT 59.59 62.98 67.74 66.16 76.56 80.05 79.06 81.89 79.51
PSAQ-ViT V2 ViT 66.78 78.24 84.02 68.23 78.27 81.15 79.98 82.04 83.90

MimiQ (Ours) ViT 68.15 78.77 84.20 69.86 78.48 81.34 80.06 82.08 83.99
Acc. Gain +1.37 +0.53 +0.18 +1.63 +0.21 +0.20 +0.08 +0.01 +0.09

W8/A8

Real-Data FT - 74.83 81.30 85.13 71.99 79.70 81.77 80.96 83.08 84.79

GDFQ CNN 72.90 80.97 84.81 71.83 79.59 81.62 80.83 82.99 84.42
Qimera CNN 72.88 81.04 84.98 71.76 79.46 81.58 80.41 82.95 84.37
AdaDFQ CNN 73.84 81.11 84.88 71.72 79.34 81.73 80.89 82.99 84.70
PSAQ-ViT V1 ViT 72.73 81.17 84.89 71.99 79.71 81.79 81.26 83.29 85.13
PSAQ-ViT V2 ViT 73.43 81.25 85.11 71.90 79.70 81.86 80.88 83.00 84.71

MimiQ (Ours) ViT 74.60 81.30 85.17 72.01 79.73 81.87 80.96 83.07 84.79
Acc. Gain +0.76 +0.05 +0.07 +0.02 +0.02 +0.01 -0.30 -0.22 -0.34

Table 2: Comparison on ImageNet image classification dataset.

Performance Evaluation
Experimental Settings
We evaluate MimiQ using tiny, small, and base versions of
ViT (Dosovitskiy et al. 2021), DeiT (Touvron et al. 2021),
and Swin Transformer (Liu et al. 2021b). We conduct bench-
marks on ImageNet classification (Krizhevsky, Sutskever,
and Hinton 2012), COCO object detection (Lin et al. 2014),
and ADE20K semantic segmentation tasks (Zhou et al.
2019). We used min-max and LSQ (Esser et al. 2020) quanti-
zation and reported the best performance. We generated 10k
samples with 2k optimization steps per batch with α=1.0,
and β=2.5e-5, following Yin et al. (2020). For fine-tuning,
we used γ={1.0, 10.0, 100.0}, training for 200 epochs. We
adapted data augmentations from SimCLR (Chen et al.
2020) for synthetic data generation and training of MimiQ.
Please refer to the extended version for the details.

Comparison on Image Classification
The experimental results are presented in Tab. 2. We first
provide “Real-Data FT” accuracies from QAT with the orig-
inal training dataset, which are considered as the empirical
upper bound accuracy of DFQs. Then, for the DFQ designed
for CNN, we utilize all components applicable to ViTs.

Overall, MimiQ shows significant accuracy gain in low-
bit settings and various network, with a maximum gain of

51.18%p. In some cases (DeiT-S/B, Swin-B), MimiQ even
outperforms Real-Data FT due to the proposed structural
attention head distillation, which provides better guidance
to follow full precision attention under a high compression
rate. The results from the W4/A8 and W8/A8 settings show
that MimiQ achieves similar performance compared to the
Real-Data FT without access to any real samples.

In Tab. 2, the quantization accuracies of DeiT are sig-
nificantly higher than those of similar-size ViTs. This may
be due to the stronger inductive bias of DeiT compared to
ViT, which enhances robustness against perturbations and
preserves its capability under quantization noise.

Object Detection and Semantic Segmentation
The results on the COCO object detection task in Tab. 3
show that MimiQ recovers from quantization error by out-
performing the baseline in most settings. The performance
gains in low-bit settings are highly noticeable, achieving up
to 22.85%p gain. In contrast, baseline methods nearly cause
the network to collapse in the W4/A4 setting.

Results on the ADE20K semantic segmentation task also
show greate improvements on low-bit settings. The DeiT-S
backbone achieves high performance gain, as it suffers from
notable degradation compared to the Swin backbones. This
is because DeiTs utilize a weak inductive bias compared to



Bits Methods
COCO Dataset ADE20K dataset

Swin-T Swin-S Backbones (mIoU)

APbox APmask APbox APmask DeiT-S Swin-T Swin-S Swin-B

W4
A4

Real FT 31.17 30.75 37.89 36.44 27.47 37.76 44.36 43.28

PSAQ V1 00.06 00.06 00.05 00.06 00.15 01.65 03.30 00.89
PSAQ V2 04.52 05.03 12.12 12.20 02.60 03.83 12.13 06.33

MimiQ 26.41 26.63 34.97 33.53 17.20 29.92 38.29 36.40
Gain +21.89 +21.60 +22.85 +21.33 +14.60 +26.09 +26.16 +30.07

W5
A5

Real FT 42.98 39.66 46.61 42.18 33.10 40.13 47.14 47.43

PSAQ V1 00.41 00.46 00.64 00.63 00.80 20.26 33.10 39.36
PSAQ V2 32.69 31.21 45.20 40.99 05.35 26.35 37.58 42.01

MimiQ 41.63 38.53 46.13 41.89 28.84 38.88 45.68 45.66
Gain +8.94 +7.32 +0.93 +0.90 +23.49 +12.53 +8.10 +3.65

W4
A8

Real FT 39.55 38.00 43.34 41.09 40.96 42.77 47.56 47.63

PSAQ V1 33.45 32.97 37.57 36.35 35.73 41.25 46.42 46.70
PSAQ V2 38.71 37.59 42.69 40.70 16.92 42.29 46.22 46.65

MimiQ 38.77 37.58 42.77 40.87 41.18 43.24 46.91 47.49
Gain +0.06 -0.01 +0.08 +0.17 +5.45 +0.95 +0.49 +0.79

W8
A8

Real FT 46.01 41.63 48.29 43.13 41.96 43.62 46.16 45.39

PSAQ V1 39.54 36.31 44.20 39.92 38.99 44.36 47.68 47.83
PSAQ V2 45.84 41.51 48.17 43.22 19.51 44.26 47.56 47.68

MimiQ 46.03 41.58 48.31 43.25 41.76 44.39 47.62 47.87
Gain +0.19 +0.07 +0.14 +0.03 +2.77 +0.03 -0.06 +0.04

Table 3: Comparison on COCO and ADE20K dataset.

LG LT Network
LIHC LCL LTV LHAD ViT-T DeiT-T ViT-B DeiT-B

7 3 3 7 13.28 37.70 07.72 34.84
3 7 3 7 12.31 16.29 00.59 06.78
3 3 7 7 38.38 50.21 37.80 56.88
3 3 3 7 39.61 50.16 39.67 62.11
3 3 3 3 42.99 52.03 62.91 74.10

Table 4: Ablation study of the loss choices.

Swin, which adapts architectural inductive bias. Therefore,
DeiT backbones are vulnerable to quantization noise, as they
need to preserve more information in their parameters.

Analysis
Sensitivity and Ablation Study
We conduct an ablation study of the individual effect of loss
functions, shown in Tab. 4. Regarding synthesis loss LG, we
see accuracy drops when LCL is excluded due to a lack of
crucial class information from the pretrained classifier. As
LTV only regularizes steep changes across nearby pixels, it
has minor impact on quantization accuracy. Overall, the best
results are achieved when all losses are applied in LG. Also,
the proposed distillation loss LHAD boosts the quantization
accuracy by up to 23.24%p. This method is especially ef-
fective on larger models (ViT/DeiT-B) due to their higher
number of attention heads, allowing for better guidance.

Tab. 5 shows the sensitivity of each hyperparameter α, β,
and γ (Eq. (10), Eq. (13)), where experiment is conducted
by varying each hyperparameter while others are fixed to the
default value. The base networks perform better at higher α,
indicating that larger models can embed more class-related
information in samples. Also, models with more heads favor
higher head distillation factor γ. In contrast, β is network-

α 0.01 0.1 1 10
ViT-T 41.41 42.54 42.67 41.04
ViT-B 37.09 49.87 53.96 55.32
DeiT-T 41.22 49.58 52.03 50.96
DeiT-B 54.07 60.02 63.11 63.52
β 2.5E-07 2.5E-06 2.5E-05 2.5E-04

ViT-T 41.17 41.19 42.67 41.56
ViT-B 48.61 48.61 53.96 51.27
DeiT-T 50.90 50.85 52.03 48.36
DeiT-B 63.77 63.13 63.11 63.13
γ 0.1 1 10 100

ViT-T 40.05 42.67 42.99 36.48
ViT-B 51.36 53.96 62.34 62.91
DeiT-T 50.65 52.03 51.01 44.34
DeiT-B 62.12 63.11 70.23 74.10

Table 5: Sensitivity analysis of hyperparameters.

Generation (gdist) Distillation (fdist)

Network MSE L1
Dist.

KL
Div. SSIM MSE L1

Dist.
KL
Div. SSIM

ViT-T 40.91 40.57 39.63 42.99 04.71 37.29 40.38 42.99
DeiT-T 50.88 50.60 50.33 52.03 17.77 49.33 49.17 52.03
ViT-B 44.90 44.56 40.96 62.91 23.47 53.25 59.23 62.91

DeiT-B 63.83 63.97 62.59 74.10 68.04 69.78 69.59 74.10

Table 6: Performance comparison on coherency metrics.

insensitive, as it only considers changes in the pixel value.

Inter-Head Attention Similarity Metrics
We provide a comparison of attention similarity metrics on
sample synthesis and attention distillation. Tab. 6 shows that
SSIM-based synthesis exhibits superior performance, while
L1 distance and KL-divergence show lesser effectiveness.
For attention-head distillation, Tab. 6 presents similar trends
that SSIM-based distillation achieves the highest accuracy,
which agrees with the rank correlation coefficients in Tab. 1.

Computational Costs for Quantization
The correlation between synthetic dataset size and quantiza-
tion accuracy (Fig. 4) reveals that MimiQ performs robustly
with varying dataset sizes, surpassing baselines with only
64 samples in W4/A4 settings and demonstrating reason-
able performance with 1k samples. We then compare com-
putational costs in Tab. 7. In addition to the default setting
of MimiQ using 10k samples, we also present results with
similar computational costs to the baselines, where -nk in-
dicates the size of the training dataset. The comparison in-
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Figure 4: Sensitivity analysis of synthetic dataset size.



Method Type Synth. Quant. Total Acc.

GDFQ QAT - 10.70h 10.70h 11.73
AdaDFQ QAT - 8.44h 8.44h 6.21
PSAQ V1 PTQ 0.11h 0.0002h 0.11h 0.94
PSAQ V2 QAT - 4.55h 4.55h 2.83

MimiQ-1k QAT 1.98h 2.39h 4.37h 59.32
MimiQ-4k QAT 7.92h 2.39h 10.31h 62.59
MimiQ-10k QAT 19.79h 2.39h 22.18h 62.91

Table 7: Quantization cost comparison of ViT-B network.
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(a) Grad-CAM comparison of DFQ methods.
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(b) Pairs of real/synthetic images with the lowest
LPIPS. There is no indication of a privacy leak.

Figure 5: Grad-CAM and LPIPS analysis of MimiQ.

dicates MimiQ outperforms baselines with similar or fewer
costs, demonstrating the cost efficiency of MimiQ.

Grad-CAM Analysis
As part of our analysis of how the MimiQ-generated images
are viewed from the network’s perspective, we utilize Grad-
CAM (Selvaraju et al. 2017) to visualize the attention map
from the last layer (Fig. 5a). It can be observed that MimiQ-
generated images have most of their object information clear
and well-clustered, similar to the real images. On the other
hand, images from other methods have much of their object
information scattered, which could harm the accuracy.

Discussion
Adaptation to Real-Data ViT Quantization. To further
explore the efficacy of MimiQ, we benchmark adaptation
of MimiQ samples to real-data ViT quantization methods
(PTQ4ViT, FQ-ViT, RepQ-ViT) following the original set-
tings of each paper. The results are shown in Tab. 8, where
“Attnk” refers to k-bit attention quantization. Please note
that these experiments utilize only synthetic samples from
the MimiQ framework, replacing the proposed attention dis-
tillation phase with existing quantization methods. In most

Methods Bits Calib. data Models
ViT-B DeiT-B Swin-B

PTQ4ViT
W6/A6 Real data 81.65 80.25 84.01

Synth. (MimiQ) 82.40 80.43 83.96

W8/A8 Real data 84.25 81.48 85.14
Synth. (MimiQ) 84.66 81.49 85.25

FQ-ViT
W8/A8/Attn4 Real data 82.68 80.85 82.38

Synth. (MimiQ) 81.78 80.75 82.11

W8/A8/Attn8 Real data 83.31 81.20 82.97
Synth. (MimiQ) 82.52 81.19 82.89

RepQ-ViT
W4/A4 Real data 68.48 75.61 78.32

Synth. (MimiQ) 19.96 72.15 67.00

W6/A6 Real data 83.62 81.27 84.57
Synth. (MimiQ) 82.35 80.84 82.36

Table 8: Comparison with real-data ViT quantizations.

ImageNet
Acc. (%)

Synthetic/Real Synthetic→Real
Distinguishability Transferability

Train 99.97 49.69
Test 99.99 00.16

Table 9: Experiments on model inversion and identity at-
tacks using ResNet-18. Results indicate the attacks fail.

cases, calibration with MimiQ samples achieves an accuracy
similar to that of real-data calibration. Notably, our results
on PTQ4ViT show that MimiQ often outperforms the orig-
inal results, suggesting MimiQ’s potential to enhance real-
data quantization. However, we observe accuracy drops in
RepQ-ViT in the W4/A4 setting. This may be due to the
overfitting to synthetic samples leading to distribution shifts,
where MimiQ framework counters this by minimizing head-
wise attention discrepancy. Overall, the results demonstrate
MimiQ’s versatility and its potential for broader application.

Does MimiQ Threaten Privacy? MimiQ may be linked
to input reconstruction attacks (Oh and Lee 2019;
Vepakomma et al. 2021) that resemble specific images of
original data. Comparison using LPIPS against the original
training dataset reveals that only general features are cap-
tured without replicating specific images (Fig. 5b). Further
tests following Prakash et al. (Tab. 9) shows that MimiQ
samples are distinguishable from real ones with near-perfect
train and test accuracies of 99.97% and 99.99%, mitigat-
ing identity attack concerns. Finally, a synthetic-trained net-
work from scratch underperformed dramatically (0.16%),
suggesting a low risk of model inversion attacks.

Conclusion
In this paper, we propose MimiQ, a DFQ for ViTs inspired
by attention similarity. We observe head-wise attention maps
of synthetic samples are not aligned and aligning them con-
tributes to the quantization accuracy. From the findings,
MimiQ utilizes inter-head attention similarity to better lever-
age the knowledge instilled in the attention architecture, syn-
thesizing training data that better aligns inter-head attention.
In addition, MimiQ utilizes fine-grained head-wise attention
map distillation. As a result, MimiQ brings significant per-
formance gain, setting a new state-of-the-art results.
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